Show that the statement p : “If x is a real number such that x3 + x = 0, then x is 0” is true by

(i) Direct method

(ii) method of Contrapositive

Asked by Aaryan | 2 years ago |  164

##### Solution :-

(i) Direct Method:

Let us assume that ‘q’ and ‘r’ be the statements given by

q: x is a real number such that x+ x=0.

r: x is 0.

The given statement can be written as:

if q, then r.

Let q be true. Then, x is a real number such that x+ x = 0

x is a real number such that x(x+ 1) = 0

x = 0

r is true

Thus, q is true

Therefore, q is true and r is true.

Hence, p is true.

(ii) Method of Contrapositive:

Let r be false. Then,

R is not true

x ≠ 0, x∈R

x(x2+1)≠0, x∈R

q is not true

Thus, -r = -q

Hence, p : q and r is true

If possible, let p be false. Then,

P is not true

-p is true

-p (p => r) is true

q and –r is true

x is a real number such that x3+x = 0and x≠ 0

x =0 and x≠0

Hence, p is true.

Answered by Sakshi | 2 years ago

### Related Questions

#### Determine whether the argument used to check the validity of the following statement is correct:

Determine whether the argument used to check the validity of the following statement is correct: p: “If x2 is irrational, then x is rational.” The statement is true because the number x2 = π2 is irrational, therefore x = π is irrational.

#### Which of the following statements are true and which are false? In each case give a valid reason for saying so

Which of the following statements are true and which are false? In each case give a valid reason for saying so

(i) p: Each radius of a circle is a chord of the circle.

(ii) q: The centre of a circle bisect each chord of the circle.

(iii) r: Circle is a particular case of an ellipse.

(iv) s: If x and y are integers such that x > y, then – x < – y.

(v) t: $$\sqrt{11}$$ is a rational number.

#### By giving a counter example, show that the following statement is not true.

By giving a counter example, show that the following statement is not true. p: “If all the angles of a triangle are equal, then the triangle is an obtuse angled triangle.”