Show that the following statement is true “The integer n is even if and only if n2 is even”

Asked by Aaryan | 1 year ago |  190

##### Solution :-

Let the statements,

p: Integer n is even

q: If n2 is even

Let p be true. Then,

Let n = 2k

Squaring both the sides, we get,

n2 = 4k2

n2 = 2.2k2

n2 is an even number.

So, q is true when p is true.

Hence, the given statement is true.

Answered by Sakshi | 1 year ago

### Related Questions

#### Determine whether the argument used to check the validity of the following statement is correct:

Determine whether the argument used to check the validity of the following statement is correct: p: “If x2 is irrational, then x is rational.” The statement is true because the number x2 = π2 is irrational, therefore x = π is irrational.

#### Which of the following statements are true and which are false? In each case give a valid reason for saying so

Which of the following statements are true and which are false? In each case give a valid reason for saying so

(i) p: Each radius of a circle is a chord of the circle.

(ii) q: The centre of a circle bisect each chord of the circle.

(iii) r: Circle is a particular case of an ellipse.

(iv) s: If x and y are integers such that x > y, then – x < – y.

(v) t: $$\sqrt{11}$$ is a rational number.

#### By giving a counter example, show that the following statement is not true.

By giving a counter example, show that the following statement is not true. p: “If all the angles of a triangle are equal, then the triangle is an obtuse angled triangle.”

#### Show that the following statement is true by the method of the contrapositive

Show that the following statement is true by the method of the contrapositive p: “If x is an integer and x2 is odd, then x is also odd.”

#### Show that the statement

Show that the statement p : “If x is a real number such that x3 + x = 0, then x is 0” is true by

(i) Direct method

(ii) method of Contrapositive