If A and B be mutually exclusive events associated with a random experiment such that P (A) = 0.4 and P (B) = 0.5, then find:

(i) P(A ∪ B)

(ii) P (A′ ∩ B′)

(iii) P (A′ ∩ B)

(iv) P (A ∩ B′)

Asked by Aaryan | 1 year ago |  39

##### Solution :-

Given: A and B are two mutually exclusive events.

P (A) = 0.4 and P (B) = 0.5

By definition of mutually exclusive events we know that:

P (A ∪ B) = P (A) + P (B)

Now, we have to find

(i) P (A ∪ B) = P (A) + P (B) = 0.5 + 0.4 = 0.9

(ii) P (A′ ∩ B′) = P (A ∪ B)′ {using De Morgan’s Law}

P (A′ ∩ B′) = 1 – P (A ∪ B)

= 1 – 0.9

= 0.1

(iii) P (A′ ∩ B) [This indicates only the part which is common with B and not A.

Hence this indicates only B]

P (only B) = P (B) – P (A ∩ B)

As A and B are mutually exclusive so they don’t have any common parts.

P (A ∩ B) = 0

∴ P (A′ ∩ B) = P (B) = 0.5

(iv) P (A ∩ B′) [This indicates only the part which is common with A and not B.

Hence this indicates only A]

P (only A) = P (A) – P (A ∩ B)

As A and B are mutually exclusive so they don’t have any common parts.

P (A ∩ B) = 0

∴ P (A ∩ B′) = P (A) = 0.4

Answered by Sakshi | 1 year ago

### Related Questions

#### One number is chosen from numbers 1 to 100. Find the probability that it is divisible by 4 or 6?

One number is chosen from numbers 1 to 100. Find the probability that it is divisible by 4 or 6?

#### The probability that a student will pass the final examination in both English and Hindi is 0.5

The probability that a student will pass the final examination in both English and Hindi is 0.5 and the probability of passing neither is 0.1. If the probability of passing the English examination is 0.75. What is the probability of passing the Hindi examination?

#### A card is drawn from a deck of 52 cards. Find the probability of getting an ace or a spade card.

A card is drawn from a deck of 52 cards. Find the probability of getting an ace or a spade card.