\( \dfrac{1}{1.2} + \dfrac{1}{2.3} + \dfrac{1}{3.4} + … + \dfrac{1}{n(n+1)} = \dfrac{n}{(n+1)}\)

Asked by Aaryan | 1 year ago |  72

1 Answer

Solution :-

For, n = 1

P (n) = \( \dfrac{1}{1.2} = \dfrac{1}{1+1}\)

\( \dfrac{1}{2}= \dfrac{1}{2}\)

P (n) is true for n = 1

Let’s check for P (n) is true for n = k,

\(\dfrac{ 1}{1.2} + \dfrac{1}{2.3} +\dfrac{ 1}{3.4 }+ … + \dfrac{1}{k(k+1)} + \dfrac{k}{(k+1) (k+2)} = \dfrac{(k+1)}{(k+2)}\)

= \(\dfrac{ \dfrac{1}{(k+1)}}{(k+2)} + \dfrac{k}{(k+1)}\)

=\(\dfrac{ (k+1) }{ (k+2)}\)

P (n) is true for n = k + 1

Hence, P (n) is true for all n ∈ N.

Answered by Aaryan | 1 year ago

Related Questions

a + (a + d) + (a + 2d) + … + (a + (n-1)d) = \( \dfrac{n}{2}\) [2a + (n-1)d]

Class 11 Maths Principle of Mathematical Induction View Answer