32n + 7 is divisible by 8 for all n ϵ N

Asked by Sakshi | 1 year ago |  52

##### Solution :-

Let P (n): 32n + 7 is divisible by 8

Let us check for n = 1,

P (1): 32 + 7 = 9 + 7 = 16

P (n) is true for n = 1. where, P (n) is divisible by 8

Now, let us check for P (n) is true for n = k, and have to prove that P (k + 1) is true.

P (k): 32k + 7 is divisible by 8

: 32k + 7 = 8λ

: 32k = 8λ – 7 … (i)

We have to prove,

32(k + 1) + 7 is divisible by 8

32k + 2 + 7 = 8μ

So,

= 32(k + 1) + 7

= 32k.32 + 7

= 9.32k + 7

= 9.(8λ – 7) + 7 by using equation (i)

= 72λ – 63 + 7

= 72λ – 56

= 8(9λ – 7)

= 8μ

P (n) is true for n = k + 1

Hence, P (n) is true for all n ∈ N.

Answered by Aaryan | 1 year ago

### Related Questions

#### Given an example of a statement P (n) such that it is true for all n ϵ N.

Given an example of a statement P (n) such that it is true for all n ϵ N.

#### a + (a + d) + (a + 2d) + … + (a + (n-1)d) = n/2 [2a + (n-1)d]

a + (a + d) + (a + 2d) + … + (a + (n-1)d) = $$\dfrac{n}{2}$$ [2a + (n-1)d]

#### 72n + 23n – 3. 3n – 1 is divisible by 25 for all n ϵ N

72n + 23n – 3. 3n – 1 is divisible by 25 for all n ϵ N