Let P (n): (ab) n = an bn
Let us check for n = 1,
P (1): (ab) 1 = a1 b1
: ab = ab
P (n) is true for n = 1.
Now, let us check for P (n) is true for n = k, and have to prove that P (k + 1) is true.
P (k): (ab) k = ak bk … (i)
We have to prove,
(ab) k + 1 = ak + 1.bk + 1
So,
= (ab) k + 1
= (ab) k (ab)
= (ak bk) (ab) using equation (1)
= (ak + 1) (bk + 1)
P (n) is true for n = k + 1
Hence, P (n) is true for all n ∈ N.
Answered by Aaryan | 1 year agoGiven an example of a statement P (n) such that it is true for all n ϵ N.
a + (a + d) + (a + 2d) + … + (a + (n-1)d) = \( \dfrac{n}{2}\) [2a + (n-1)d]
72n + 23n – 3. 3n – 1 is divisible by 25 for all n ϵ N
n (n + 1) (n + 5) is a multiple of 3 for all n ϵ N.
32n + 2 – 8n – 9 is divisible by 8 for all n ϵ N