$$\dfrac{(3x – 2)}{5} ≤ \dfrac{(4x – 3)}{2}$$

Asked by Aaryan | 1 year ago |  172

##### Solution :-

Multiply both the sides by 5 we get,

$$\dfrac{ (3x – 2)}{5} × 5 ≤\dfrac{ (4x – 3)}{2} × 5$$

$$3x – 2 ≤ \dfrac{(20x – 15)}{2}$$

Multiply both the sides by 2 we get,

$$(3x – 2) × 2 ≤ \dfrac{(20x – 15)}{2} × 2$$

6x – 4 ≤ 20x – 15

20x – 15 ≥ 6x – 4

20x – 15 + 15 ≥ 6x – 4 + 15

20x ≥ 6x + 11

20x – 6x ≥ 6x + 11 – 6x

14x ≥ 11

Divide both sides by 14, we get

$$\dfrac{ 14x}{14} ≥ \dfrac{11}{14}$$

x ≥ $$\dfrac{11}{14}$$

The solution of the given inequation is ($$\dfrac{11}{14}$$, ∞).

Answered by Aaryan | 1 year ago

### Related Questions

#### Solve each of the following in equations and represent the solution set on the number line

Solve each of the following in equations and represent the solution set on the number line $$\dfrac{5x}{4}-\dfrac{4x-1}{3}>1,$$ where x ϵ R.

#### Solve each of the following in equations and represent the solution set on the number line.

Solve each of the following in equations and represent the solution set on the number line.$$\dfrac{5x-8}{3}\geq \dfrac{4x-7}{2}$$, where x ϵ R.

#### Solve each of the following in equations and represent the solution set on the number line. 3 – 2x ≥ 4x – 9,

Solve each of the following in equations and represent the solution set on the number line. 3 – 2x ≥ 4x – 9, where x ϵ R.

#### Solve each of the following in equations and represent the solution set on the number line. 3x – 4 > x + 6

Solve each of the following in equations and represent the solution set on the number line. 3x – 4 > x + 6, where x ϵ R.