Prove the identities secx – secx = tanx + tanx

Asked by Aaryan | 1 year ago |  89

1 Answer

Solution :-

Let us consider LHS: secx – secx

(secx)2 – secx

By using the formula, sec2 θ = 1 + tan2 θ.

(1 + tanx)2 – (1 + tanx)

1 + 2tanx + tanx – 1 – tanx

tanx + tanx

= RHS

 LHS = RHS

Hence proved.

Answered by Sakshi | 1 year ago

Related Questions

prove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)

Class 11 Maths Trigonometric Functions View Answer