Let us consider LHS: sin6 x + cos6 x
(sin2 x) 3 + (cos2 x) 3
By using the formula, a3 + b3 = (a + b) (a2 + b2 – ab)
(sin2 x + cos2 x) [(sin2 x) 2 + (cos2 x) 2 – sin2 x cos2 x]
By using the formula, sin2 x + cos2 x = 1 and a2 + b2 = (a + b) 2 – 2ab
1 × [(sin2 x + cos2 x) 2 – 2sin2 x cos2 x – sin2 x cos2 x
12 – 3sin2 x cos2 x
1 – 3sin2 x cos2 x
= RHS
∴ LHS = RHS
Hence proved.
Answered by Sakshi | 1 year agoprove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)
prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)
prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)
prove that cos 570° sin 510° + sin (-330°) cos (-390°) = 0
prove that tan (-125°) cot (-405°) – tan (-765°) cot (675°) = 0