If \( sin x = \dfrac{12}{13}\) and lies in the second quadrant, find the value of sec x + tan x.

Asked by Sakshi | 1 year ago |  77

1 Answer

Solution :-

Given:

Sin x = \( \dfrac{12}{13}\) and x lies in the second quadrant.

We know, in second quadrant, sin x and cosec x are positive and all other ratios are negative.

By using the formulas,

Cos x = \( \sqrt{(1-sin^2 x)}\)

\( \dfrac{-5}{13}\)

We know,

tan x =\( \dfrac{sin x}{cos x}\)

sec x = \( \dfrac{1}{cos x}\)

Now,

tan x =\( \dfrac{-12}{5}\)

sec x = \( \dfrac{-13}{5}\)

Sec x + tan x = \( \dfrac{-13}{5}+\) +\( \dfrac{-12}{5}\)

\( \dfrac{-25}{5}\)

= -5

Sec x + tan x = -5

Answered by Sakshi | 1 year ago

Related Questions

prove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)

Class 11 Maths Trigonometric Functions View Answer