If \( sin x =\dfrac{ 3}{5}, tan y = \dfrac{1}{2} \)and \(\dfrac{ π}{2} < x< π< y< \dfrac{3π}{2}\) find the value of 8 tan x -\( \sqrt{5}\) sec y.

Asked by Sakshi | 1 year ago |  80

1 Answer

Solution :-

We know that, x is in second quadrant and y is in third quadrant.

In second quadrant, cos x and tan x are negative.

In third quadrant, sec y is negative.

By using the formula,

cos x = \( – \sqrt{(1-sin^2 x)}\)

tan x =\(\dfrac{ sin x}{cos x}\)

Now,

cos x = \( – \sqrt{(1-sin^2 x)}\)

= \(\dfrac{ – 4}{5}\)

tan x = \( \dfrac{ sin x}{cos x}\)

= \( \dfrac{3}{5}× \dfrac{-5}{4}\)

\( \dfrac{-3}{4}\)

We know that \(sec y = – \sqrt{(1+tan^2 y)}\)

\( \sqrt{-\dfrac{5}{2}}\)

= \(\dfrac{ (-12+5)}{2}\)

=\( \dfrac{-7}{2}\)

\(8 tan x – \sqrt{5} sec y = \dfrac{-7}{2}\) 

Answered by Sakshi | 1 year ago

Related Questions

prove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)

Class 11 Maths Trigonometric Functions View Answer