If sin x + cos x = 0 and x lies in the fourth quadrant, find sin x and cos x.

Asked by Aaryan | 1 year ago |  44

1 Answer

Solution :-

Given:

Sin x + cos x = 0 and x lies in fourth quadrant.

Sin x = -cos x

\(\dfrac{ Sin x}{cos x}\) = -1

So, tan x = -1 (since, tan x = sin x/cos x)

We know that, in fourth quadrant, cos x and sec x are positive and all other ratios are negative.

By using the formulas,

Sec x = \( \sqrt{(1 + tan^2 x)}\)

Cos x =\( \dfrac{ 1}{sec x}\)

Sin x = \( - \sqrt{(1 -cos^2 x)}\)

Now,

Sec x = \( \sqrt{(1 + tan^2 x)}\)

= \( \sqrt{(1 + (-1)^2)}\)

\( \sqrt{2}\)

Cos x = \( \dfrac{ 1}{sec x}\)

\( \dfrac{1}{\sqrt{2}}\)

Sin x = \( – \sqrt{(1 – cos^2 x)}\)

\( \sqrt{-\dfrac{1}{2}}\)

\( - \dfrac{1}{\sqrt{2}}\)

sin x = \( - \dfrac{1}{\sqrt{2}}\) and cos x = \( \dfrac{1}{\sqrt{2}}\)

Answered by Sakshi | 1 year ago

Related Questions

prove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)

Class 11 Maths Trigonometric Functions View Answer