Find the values of trigonometric ratios \( sin \dfrac{-11π}{6}\)

Asked by Sakshi | 1 year ago |  67

1 Answer

Solution :-

= sin (-330°)

= – sin (90×3 + 60)°

Since, 330° lies in the IV quadrant in which the sine function is negative.

sin (-330°) = – sin (90×3 + 60)°

= – (-cos 60°)

= – (\( \dfrac{-1}{2}\))

=\( \dfrac{1}{2}\)

Answered by Sakshi | 1 year ago

Related Questions

prove that \(sin \dfrac{8π}{3} cos \dfrac{23π}{6} + cos \dfrac{13π}{3} sin \dfrac{35π}{6} = \dfrac{1}{2}\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( 3 sin \dfrac{π}{6} sec \dfrac{π}{3} – 4 sin \dfrac{5π}{6} cot \dfrac{π}{4} = 1\)

Class 11 Maths Trigonometric Functions View Answer

prove that \( tan \dfrac{11π}{3} – 2 sin \dfrac{4π}{6} – \dfrac{3}{4} cosec^2 \dfrac{π}{4} + 4 cos^2 \dfrac{17π}{6} = \dfrac{(3 – 4\sqrt{3})}{2}\)

Class 11 Maths Trigonometric Functions View Answer