Solve the quadratic equations by factorization method only 9x2 + 4 = 0

Asked by Sakshi | 1 year ago |  45

##### Solution :-

Given: 9x2 + 4 = 0

9x2 + 4 × 1 = 0

We know, i2 = –1 = 1 = –i2

By substituting 1 = –i2 in the above equation, we get

So,

9x2 + 4(–i2) = 0

9x2 – 4i2 = 0

(3x)2 – (2i)2 = 0

[By using the formula, a2 – b2 = (a + b) (a – b)]

(3x + 2i) (3x – 2i) = 0

3x + 2i = 0 or 3x – 2i = 0

3x = –2i or 3x = 2i

x = $$\dfrac{-2i}{3}$$ or x =$$\dfrac{2i}{3}$$

The roots of the given equation are $$\dfrac{-2i}{3}, \dfrac{2i}{3}$$

Answered by Aaryan | 1 year ago

### Related Questions

#### Show that 1 + i10 + i20 + i30 is a real number?

Show that 1 + i10 + i20 + i30 is a real number?

#### Solve the quadratic equations by factorization method only 6x2 – 17ix – 12 = 0

Solve the quadratic equations by factorization method only 6x2 – 17ix – 12 = 0

#### Solve the quadratic equations by factorization method only x2 + (1 – 2i)x – 2i = 0

Solve the quadratic equations by factorization method only x2 + (1 – 2i)x – 2i = 0