Solve the quadratic equations by factorization method only x2 – x + 1 = 0

Asked by Sakshi | 1 year ago |  47

1 Answer

Solution :-

Given: x2 – x + 1 = 0

x2 – x + \( \dfrac{1}{4}\) + \( \dfrac{3}{4}\) = 0

x2 – 2 (x) (\( \dfrac{1}{2}\)) + (\( \dfrac{1}{2}\))2 + \( \dfrac{3}{4}\) = 0

(x – \( \dfrac{1}{2}\))2 + \( \dfrac{3}{4}\) = 0 [Since, (a + b)2 = a2 + 2ab + b2]

(x – \( \dfrac{1}{2}\))2 + \( \dfrac{3}{4}\) × 1 = 0

We know, i2 = –1 = 1 = –i2

By substituting 1 = –i2 in the above equation, we get

(x – \( \dfrac{1}{2}\))2 + \( \dfrac{3}{4}\) (-1)2 = 0

(x – \( \dfrac{1}{2}\))2 + \( \dfrac{3}{4}\) (-i)2 = 0

(x – \( \dfrac{1}{2}\))2 – \( \sqrt{(\dfrac{3i}{2})^2}\)= 0

[By using the formula, a2 – b2 = (a + b) (a – b)]

(x – \( \dfrac{1}{2}\) + \( \sqrt{\dfrac{3i}{2}}\)) (x – \( \dfrac{1}{2}\) – \( \sqrt{\dfrac{3i}{2}}\)) = 0

(x – \( \dfrac{1}{2}\) + \( \sqrt{\dfrac{3i}{2}}\)) = 0 or (x – \( \dfrac{1}{2}\) –\( \sqrt{\dfrac{3i}{2}}\)) = 0

x = \( \dfrac{1}{2}\) – \( \sqrt{\dfrac{3i}{2}}\) or x = \( \dfrac{1}{2}\) + \( \sqrt{\dfrac{3i}{2}}\)

The roots of the given equation are \( \dfrac{1}{2}\) + \( \sqrt{\dfrac{3i}{2}}\), \( \dfrac{1}{2}\) – \( \sqrt{\dfrac{3i}{2}}\)

Answered by Aaryan | 1 year ago

Related Questions