Solve the quadratic equations by factorization method only x2 + x + 1 = 0

Asked by Sakshi | 1 year ago |  270

1 Answer

Solution :-

Given: x2 + x + 1 = 0

\( x^2 + x + \dfrac{1}{4} + \dfrac{3}{4} = 0\)

x2 + 2 (x) (\( \dfrac{1}{2}\)) + (\( \dfrac{1}{2}\))2 + \( \dfrac{3}{4}\) = 0

(x + \( \dfrac{1}{2}\))2 + \( \dfrac{3}{4}\) = 0 [Since, (a + b)2 = a2 + 2ab + b2]

(x + \( \dfrac{1}{2}\))2 + \( \dfrac{3}{4}\) × 1 = 0

We know, i2 = –1 = 1 = –i2

By substituting 1 = –i2 in the above equation, we get

(x + \( \dfrac{1}{2}\))2 + \( \dfrac{3}{4}\) (-1)2 = 0

(x + \( \dfrac{1}{2}\))2 +  \( \dfrac{3}{4}\)i2 = 0

(x + \( \dfrac{1}{2}\))2 – \( \sqrt{(\dfrac{3i}{2})^2}=0\)

[By using the formula, a2 – b2 = (a + b) (a – b)]

\( (x + \dfrac{1}{2} + \sqrt{(\dfrac{3i}{2}})) (x + \dfrac{1}{2} – \sqrt{(\dfrac{3i}{2}})) = 0\)

The roots of the given equation are \( \dfrac{-1}{2}\) + \( \sqrt{(\dfrac{3i}{2})}\), \( \dfrac{-1}{2}\) – \( \sqrt{(\dfrac{3i}{2})^2}\)

Answered by Sakshi | 1 year ago

Related Questions