Let us consider the LHS
Now,
\( 2^{\dfrac{1}{4}} + \dfrac{2}{8} + \dfrac{3}{16} + \dfrac{1}{8} + …∞\)
So let us consider 2x, where x = \( \dfrac{1}{4}+ \dfrac{2}{8} + \dfrac{3}{16} + \dfrac{1}{8} + …∞\)........ (1)
Multiply both sides of the equation with \( \dfrac{1}{2}\), we get
\(\dfrac{ x}{2} = \dfrac{1}{2} ( \dfrac{1}{4} + \dfrac{2}{8} + \dfrac{3}{16} + \dfrac{1}{8} + … ∞)\)
= \( \dfrac{1}{8} +\dfrac{2}{16} + \dfrac{3}{32} + … + ∞\) …. (2)
Now, subtract (2) from (1) we get,
\( x-\dfrac{ x}{2} = \dfrac{1}{2} ( \dfrac{1}{4} + \dfrac{2}{8} + \dfrac{3}{16} + \dfrac{1}{8} + … ∞)\) –
\( \dfrac{1}{8} +\dfrac{2}{16} + \dfrac{3}{32} + … + ∞\)
By grouping similar terms,
\( x = \dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{8} + \dfrac{1}{16} + … ∞\)
Where, a = \( \dfrac{1}{2}\), r =\(\dfrac{ (\dfrac{1}{4}) }{ (\dfrac{1}{2})} \)= \( \dfrac{1}{2}\)
By using the formula,
S∞ = \( \dfrac{a}{(1 – r)}\)
= \(\dfrac{ (\dfrac{1}{2}) }{ (\dfrac{1}{2})}\)
= 1
From equation (1), 2x = 21 = 2 = RHS
Hence proved.
Answered by Sakshi | 1 year agoConstruct a quadratic in x such that A.M. of its roots is A and G.M. is G.
Find the geometric means of the following pairs of numbers:
(i) 2 and 8
(ii) a3b and ab3
(iii) –8 and –2
Insert 5 geometric means between \( \dfrac{32}{9}\) and \( \dfrac{81}{2}\).