Find the equation of a line passing through (3, -2) and perpendicular to the line x – 3y + 5 = 0.

Asked by Sakshi | 1 year ago |  40

##### Solution :-

Given:

The equation is perpendicular to x – 3y + 5 = 0 and passes through (3,-2)

The equation of the line perpendicular to x − 3y + 5 = 0 is

3x + y + λ = 0,

Where, λ is a constant.

It passes through (3, − 2).

Substitute the values in above equation, we get

3 (3) + (-2) + λ = 0

9 – 2 + λ = 0

λ = – 7

Now, substitute the value of λ = − 7 in 3x + y + λ = 0, we get

3x + y – 7 = 0

The required line is 3x + y – 7 = 0.

Answered by Aaryan | 1 year ago

### Related Questions

#### Find the angle between the line joining the points (2, 0), (0, 3) and the line x + y = 1.

Find the angle between the line joining the points (2, 0), (0, 3) and the line x + y = 1.

#### Prove that the points (2, -1), (0, 2), (2, 3) and (4, 0) are the coordinates of the vertices

Prove that the points (2, -1), (0, 2), (2, 3) and (4, 0) are the coordinates of the vertices of a parallelogram and find the angle between its diagonals.

#### Find the acute angle between the lines 2x – y + 3 = 0 and x + y + 2 = 0.

Find the acute angle between the lines 2x – y + 3 = 0 and x + y + 2 = 0.