Find the equation of the parabola that satisfies the given conditions Focus (0,–3); directrix y = 3

Asked by Sakshi | 1 year ago |  73

##### Solution :-

Given:

Focus (0, -3) and directrix y = 3

We know that the focus lies on the y–axis, the y-axis is the axis of the parabola.

So, the equation of the parabola is either of the form x2 = 4ay or x2 = -4ay.

It is also seen that the directrix, y = 3 is above the x- axis,

While the focus (0,-3) is below the x-axis.

Hence, the parabola is of the form x2 = -4ay.

Here, a = 3

The equation of the parabola is x2 = -12y.

Answered by Aaryan | 1 year ago

### Related Questions

#### An equilateral triangle is inscribed in the parabola y2 = 4ax,

An equilateral triangle is inscribed in the parabola y2 = 4ax, where one vertex is at the vertex of the parabola. Find the length of the side of the triangle.

#### A man running a racecourse notes that the sum of the distances from the two flag posts from him is always

A man running a racecourse notes that the sum of the distances from the two flag posts from him is always 10 m and the distance between the flag posts is 8 m. Find the equation of the posts traced by the man.

#### Find the area of the triangle formed by the lines joining the vertex of the parabola x2 = 12y to the ends

Find the area of the triangle formed by the lines joining the vertex of the parabola x2 = 12y to the ends of its latus rectum.