Given:

Vertex (0, 0) and focus (-2, 0)

We know that the vertex of the parabola is (0, 0) and the focus lies on the positive x-axis. [x-axis is the axis of the parabola.]

The equation of the parabola is of the form y^{2}=-4ax.

Since, the focus is (-2, 0), a = 2

The equation of the parabola is y^{2} = -4 × 2 × x,

y^{2} = -8x

An equilateral triangle is inscribed in the parabola y^{2} = 4ax, where one vertex is at the vertex of the parabola. Find the length of the side of the triangle.

A man running a racecourse notes that the sum of the distances from the two flag posts from him is always 10 m and the distance between the flag posts is 8 m. Find the equation of the posts traced by the man.

Find the area of the triangle formed by the lines joining the vertex of the parabola x^{2} = 12y to the ends of its latus rectum.

A rod of length 12 cm moves with its ends always touching the coordinate axes. Determine the equation of the locus of a point P on the rod, which is 3 cm from the end in contact with the x-axis.

An arch is in the form of a semi-ellipse. It is 8 m wide and 2 m high at the centre. Find the height of the arch at a point 1.5 m from one end.