Given:
Foci (±3, 0) and a = 4
Since the foci are on the x-axis, the major axis is along the x-axis.
Then, c = 3 and a = 4.
It is known that a2 = b2 + c2.
a2 = 82 + 62
= 64 + 36
= 100
16 = b2 + 9
b2 = 16 – 9
= 7
The equation of the ellipse is \( \dfrac{x^2}{16 }+ \dfrac{y^2}{7} = 1\)
Answered by Aaryan | 1 year agoAn equilateral triangle is inscribed in the parabola y2 = 4ax, where one vertex is at the vertex of the parabola. Find the length of the side of the triangle.
A man running a racecourse notes that the sum of the distances from the two flag posts from him is always 10 m and the distance between the flag posts is 8 m. Find the equation of the posts traced by the man.
Find the area of the triangle formed by the lines joining the vertex of the parabola x2 = 12y to the ends of its latus rectum.
A rod of length 12 cm moves with its ends always touching the coordinate axes. Determine the equation of the locus of a point P on the rod, which is 3 cm from the end in contact with the x-axis.
An arch is in the form of a semi-ellipse. It is 8 m wide and 2 m high at the centre. Find the height of the arch at a point 1.5 m from one end.