Find the \( 7^{th}\) term in the expansion of \( (3x^2 – \dfrac{1}{x^3})^{10}\)

Asked by Sakshi | 1 year ago |  73

1 Answer

Solution :-

Let us consider the 7th term as T7

So,

T7 = T6+1

10C6 (3x2)10-6 (\( \dfrac{-1}{x^3}\))6

10C6 (3)4 (x)8 (\( \dfrac{1}{x^{18}}\))

= \(\dfrac{10×9×8×7×81}{ 4×3×2×x^{10}}\)

= \(\dfrac{ 17010 }{ x^{10}}\)

The 7th term of the expression is \( \dfrac{ 17010 }{ x^{10}}\)

Answered by Sakshi | 1 year ago

Related Questions

Find the term independent of x in the expansion of \( (\dfrac{3}{2x^2} – \dfrac{1}{3x})^9\)

Class 11 Maths Binomial Theorem View Answer

Find the middle term in the expansion of \((x-\dfrac{ 1}{x})^{2n+1}\)

Class 11 Maths Binomial Theorem View Answer

Find the middle term in the expansion of (1 + 3x + 3x2 + x3)2n

Class 11 Maths Binomial Theorem View Answer

Find the middle term in the expansion of \( (\dfrac{x}{a} – \dfrac{a}{x})^{10}\)

Class 11 Maths Binomial Theorem View Answer