Find the maximum and the minimum values, if any, without using derivatives of the functions f (x) = sin 2x + 5 on R

Asked by Sakshi | 1 year ago |  78

##### Solution :-

Given f (x) = sin 2x + 5 on R

We know that – 1 ≤ sin 2x ≤ 1

⇒ – 1 + 5 ≤ sin2x + 5 ≤ 1 + 5

⇒ 4 ≤ sin 2x + 5 ≤ 6

Hence, the maximum value and minimum value of f are 6 and 4 respectively.

Answered by Aaryan | 1 year ago

### Related Questions

#### Given the sum of the perimeters of a square and a circle, show that the sum of their areas is least when one side

Given the sum of the perimeters of a square and a circle, show that the sum of their areas is least when one side of the square is equal to diameter of the circle.

#### A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape

A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape of a square and the other into shape of an equilateral triangle. Where the wire should be cut so that the sum of the areas of the square and triangle is minimum?

#### A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square

A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?