Find the points of local maxima or local minima, functions, using the first derivative test. Also, find the local maximum or local minimum values, as the case may be f (x) = x3 – 3x

Asked by Sakshi | 1 year ago |  106

1 Answer

Solution :-

Given, f (x) = x3 – 3x

Differentiate with respect to x then we get,

f’ (x) = 3x2 – 3

Now, f‘(x) =0

3x2 = 3 ⇒ x = ±1

Again differentiate f’(x) = 3x2 – 3

f’’(x)= 6x

f’’(1)= 6 > 0

f’’ (– 1)= – 6 < 0

By second derivative test, x = 1 is a point of local minima and local minimum value of f at

x = 1 is f (1) = 13 – 3 = 1 – 3 = – 2

However, x = – 1 is a point of local maxima and local maxima value of f at

x = – 1 is

f (– 1) = (– 1)3 – 3(– 1)

= – 1 + 3

= 2

Hence, the value of minima is – 2 and maxima is 2.

Answered by Aaryan | 1 year ago

Related Questions

Given the sum of the perimeters of a square and a circle, show that the sum of their areas is least when one side of the square is equal to diameter of the circle.

Class 12 Maths Application of Derivatives View Answer

A wire of length 20 m is to be cut into two pieces. One of the pieces will be bent into shape of a square and the other into shape of an equilateral triangle. Where the wire should be cut so that the sum of the areas of the square and triangle is minimum?

Class 12 Maths Application of Derivatives View Answer

A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the lengths of the two pieces so that the combined area of the circle and the square is minimum?

Class 12 Maths Application of Derivatives View Answer

Of all the closed cylindrical cans (right circular), which enclose a given volume of 100 cm3, which has the minimum surface area?

Class 12 Maths Application of Derivatives View Answer

Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.

Class 12 Maths Application of Derivatives View Answer