Evaluate the integrals \( \int (2-3x)(3+2x)(1-2x)dx\)

Asked by Sakshi | 1 year ago |  48

1 Answer

Solution :-

∫(2 – 3x)(3 + 2x)(1 – 2x) dx

= ∫(6 + 4x – 9x – 6x2)(1 – 2x) dx

= ∫(6 – 5x – 6x2)(1 – 2x) dx

= ∫(6 – 5x – 6x2 – 12x + 10x2 + 12x3) dx

= ∫(6 – 17x + 4x2 + 12x3) dx

Upon splitting the above, we have

= ∫6 dx – ∫17x dx + ∫4x2 dx + ∫12x3 dx

On integrating using formula,

∫xn dx =\(\dfrac{ x^{n+1}}{n+1}\)

we get

= 6x – \( \dfrac{17}{(1+1)}\) x1+1 + \( \dfrac{4}{2+1}\) x2+1 + \( \dfrac{12}{3+1}\) x3+1 + c

= \( 6x – \dfrac{17x^2}{2} +\dfrac{ 4x^3}{3} + 3x^4 + c\)

Answered by Aaryan | 1 year ago

Related Questions

Evaluate the integrals \( \int sin^3x\;cos^6x\;dx\)

Class 12 Maths Integrals View Answer

Evaluate the integrals \( \int sin^5x\;cosx\;dx\)

Class 12 Maths Integrals View Answer

Evaluate the integrals \( \int cos^5xdx\)

Class 12 Maths Integrals View Answer

Evaluate the integrals \( \int sin^5xdx\)

Class 12 Maths Integrals View Answer

Evaluate the integrals \( \int sin^4x\;cos^3xdx\)

Class 12 Maths Integrals View Answer