∫(2 – 3x)(3 + 2x)(1 – 2x) dx
= ∫(6 + 4x – 9x – 6x2)(1 – 2x) dx
= ∫(6 – 5x – 6x2)(1 – 2x) dx
= ∫(6 – 5x – 6x2 – 12x + 10x2 + 12x3) dx
= ∫(6 – 17x + 4x2 + 12x3) dx
Upon splitting the above, we have
= ∫6 dx – ∫17x dx + ∫4x2 dx + ∫12x3 dx
On integrating using formula,
∫xn dx =\(\dfrac{ x^{n+1}}{n+1}\)
we get
= 6x – \( \dfrac{17}{(1+1)}\) x1+1 + \( \dfrac{4}{2+1}\) x2+1 + \( \dfrac{12}{3+1}\) x3+1 + c
= \( 6x – \dfrac{17x^2}{2} +\dfrac{ 4x^3}{3} + 3x^4 + c\)
Answered by Aaryan | 1 year ago