We know that sin3x = -4sin3x + 3sinx
-4sin3x = 3sinx - sin3x
\( sin^3x=\dfrac{3sinx - sin3x}{4}\)
\( \int \dfrac{3sin(2x+1) - sin3(2x+1)}{4}\)
\( \int sin\;ax\;dx=\dfrac{-1}{a}cos\;ax+c\)
On integrating we get,
\( \dfrac{-3}{8}cos(2x+1)+\dfrac{1}{24}cos(6x+3)+c\)
Answered by Sakshi | 1 year ago