Evaluate the integrals \( \int sin^3(2x+1)dx\)

Asked by Sakshi | 1 year ago |  40

1 Answer

Solution :-

We know that sin3x = -4sin3x + 3sinx

-4sin3x = 3sinx - sin3x

\( sin^3x=\dfrac{3sinx - sin3x}{4}\)

\( \int \dfrac{3sin(2x+1) - sin3(2x+1)}{4}\)

\( \int sin\;ax\;dx=\dfrac{-1}{a}cos\;ax+c\)

On integrating we get,

\( \dfrac{-3}{8}cos(2x+1)+\dfrac{1}{24}cos(6x+3)+c\)

Answered by Sakshi | 1 year ago

Related Questions

Evaluate the integrals \( \int sin^3x\;cos^6x\;dx\)

Class 12 Maths Integrals View Answer

Evaluate the integrals \( \int sin^5x\;cosx\;dx\)

Class 12 Maths Integrals View Answer

Evaluate the integrals \( \int cos^5xdx\)

Class 12 Maths Integrals View Answer

Evaluate the integrals \( \int sin^5xdx\)

Class 12 Maths Integrals View Answer

Evaluate the integrals \( \int sin^4x\;cos^3xdx\)

Class 12 Maths Integrals View Answer