\( \int sin^5x\;dx\)
The given equation can be written as
\( \int sin^5x\;dx= \int sin^3xsin^2x\;dx\)
\( \int (sin^3x-sin^3xcos^2x)dx\)
\( \int sin^xdx-\int sinx\;cos^2xdx-\int sin^3xcos^2xdx\)
We know that , d(cosx) = -sinx dx
So put cosx =t and dt = -sinx dx in above integrals
\( \int sin^xdx-\int sinx\;cos^2xdx-\int sin^3xcos^2xdx\)
\( \int sin^xdx+\int t^2dt+\int (t^2-t^4)dt\)
= \( -cosx+\dfrac{2}{3}cos^3x-\dfrac{1}{5}cos^5x+c\)
Answered by Sakshi | 1 year ago