Evaluate the integrals \( \int sin^5x\;cosx\;dx\)

Asked by Sakshi | 1 year ago |  162

1 Answer

Solution :-

\( \int sin^5x \;cosx\; dx\)

Let sinx = t

Then d(sinx) = dt = cosx dx

\( \int sin^5x \;cosx\; dx=\int t^5dt\)

On integrating we get

\( \dfrac{t^6}{6}+c\)

\( \dfrac{sin^6x}{6}+c\)

 

Answered by Sakshi | 1 year ago

Related Questions

Evaluate the integrals \( \int sin^3x\;cos^6x\;dx\)

Class 12 Maths Integrals View Answer

Evaluate the integrals \( \int cos^5xdx\)

Class 12 Maths Integrals View Answer

Evaluate the integrals \( \int sin^5xdx\)

Class 12 Maths Integrals View Answer

Evaluate the integrals \( \int sin^4x\;cos^3xdx\)

Class 12 Maths Integrals View Answer

Evaluate the integrals \( \int cos3x\;cos4x\;dx\)

Class 12 Maths Integrals View Answer