Evaluate the integrals \( \int sin^5x\;cosx\;dx\)
\( \int sin^5x \;cosx\; dx\)
Let sinx = t
Then d(sinx) = dt = cosx dx
\( \int sin^5x \;cosx\; dx=\int t^5dt\)
On integrating we get
\( \dfrac{t^6}{6}+c\)
\( \dfrac{sin^6x}{6}+c\)
Evaluate the integrals \( \int sin^3x\;cos^6x\;dx\)
Evaluate the integrals \( \int cos^5xdx\)
Evaluate the integrals \( \int sin^5xdx\)
Evaluate the integrals \( \int sin^4x\;cos^3xdx\)
Evaluate the integrals \( \int cos3x\;cos4x\;dx\)