Evaluate the integrals \( \int sin^3x\;cos^6x\;dx\)

Asked by Sakshi | 1 year ago |  159

1 Answer

Solution :-

\( \int sin^3x\;cos^6x\;dx\)

=\( ∫sin^2x\;sinx\;cos^6xdx\)

=\( ∫(1−cos^2x)sinx\;cos^6x\;dx\)

=\( ∫(cos^6x−cos^8x)sinx\;dx\)

Let t = cosx

= dt =−sinxdx

\(- \int (t ^6−t ^8)dt\)

\( \dfrac{cos^9x}{9}- \dfrac{cos^7x}{7}+c\) where t=cosx

Answered by Sakshi | 1 year ago

Related Questions

Evaluate the integrals \( \int sin^5x\;cosx\;dx\)

Class 12 Maths Integrals View Answer

Evaluate the integrals \( \int cos^5xdx\)

Class 12 Maths Integrals View Answer

Evaluate the integrals \( \int sin^5xdx\)

Class 12 Maths Integrals View Answer

Evaluate the integrals \( \int sin^4x\;cos^3xdx\)

Class 12 Maths Integrals View Answer

Evaluate the integrals \( \int cos3x\;cos4x\;dx\)

Class 12 Maths Integrals View Answer