If x is a digit of the number $$\overline{66784x}$$ such that it is divisible by 9, find possible values of x.

Asked by Sakshi | 1 year ago |  69

##### Solution :-

We know that the given number $$\overline{66784x}$$ is divisible by 9.

And, if a number is divisible by 9 then sum of digits must be a multiple of 9.

i.e., 6 + 6 + 7 + 8 + 4 + x = multiple of 9

x + 31 = 0, 9, 18, 27…..

Here ‘x’ is a digit, where, ‘x’ can have values between 0 and 9.

x + 31 = 36 which gives x = 5.

x = 5

Answered by Aaryan | 1 year ago

### Related Questions

#### Which of the following numbers are divisible by 11

Which of the following numbers are divisible by 11:

(i) 10835

(ii) 380237

(iii) 504670

(iv) 28248

#### In each of the following replace * by a digit so that the number formed is divisible by 11:

In each of the following replace * by a digit so that the number formed is divisible by 11:

(i) 64 × 2456

(ii) 86 × 6194

#### In each of the following replace * by a digit so that the number formed is divisible by 6:

In each of the following replace * by a digit so that the number formed is divisible by 6:

(i) 97 × 542

(ii) 709 × 94

#### In each of the following replace × by a digit so that the number formed is divisible by 9:

In each of the following replace × by a digit so that the number formed is divisible by 9

(i) 49 × 2207

(ii) 5938 × 623