Factorize algebraic expressions: 4(x + y) (3a – b) + 6(x + y) (2b – 3a)

Asked by Aaryan | 1 year ago |  87

1 Answer

Solution :-

We have,

4(x + y) (3a – b) + 6(x + y) (2b – 3a)

By taking (x + y) as common we get,

(x + y) [4(3a – b) + 6(2b – 3a)]

(x + y) [12a – 4b + 12b – 18a]

(x + y) [-6a + 8b]

(x + y) 2(-3a + 4b)

(x + y) 2(4b – 3a)

Answered by Sakshi | 1 year ago

Related Questions

Divide as directed (x4 – 81) ÷ (x3 + 3x2 + 9x + 27)

Divide as directed (x4 – 81) ÷ (x3 + 3x2 + 9x + 27)

Class 8 Maths Factorisation View Answer

Divide as directed (3x3 – 6x2 – 24x) ÷ (x – 4) (x + 2)

Divide as directed (3x3 – 6x2 – 24x) ÷ (x – 4) (x + 2)

Class 8 Maths Factorisation View Answer

Divide as directed 15(y + 3)(y2 – 16) ÷ 5(y2 – y – 12)

Divide as directed 15(y + 3)(y2 – 16) ÷ 5(y2 – y – 12)

Class 8 Maths Factorisation View Answer

Factorise x2 + 2xy – 99y2

Factorise x2 + 2xy – 99y2

Class 8 Maths Factorisation View Answer

Factorise 6x2 – 5xy – 6y2

Factorise 6x2 – 5xy – 6y2

Class 8 Maths Factorisation View Answer