LHS = A ∩ (A ⋃ B)’
Using De-Morgan’s law (A ⋃ B)’ = (A’ ∩ B’)
⇒ LHS = A ∩ (A’ ∩ B’)
⇒ LHS = (A ∩ A’) ∩ (A ∩ B’)
We know that A ∩ A’ = ϕ
⇒ LHS = ϕ ∩ (A ∩ B’)
We know that intersection of null set with any set is null set only
Let (A ∩ B’) be any set X hence
⇒ LHS = ϕ ∩ X
⇒ LHS = ϕ
⇒ LHS = RHS
Hence proved
Answered by Sakshi | 11 months agoFind the symmetric difference A Δ B, when A = {1, 2, 3} and B = {3, 4, 5}.