The velocity-time graph of a particle in one-dimensional motion is shown in the figure.
(a) \( x (t_2) = x (t_1) + v (t_1) (t_2 – t_1) +\) (\( \dfrac{1}{2}\)) \( a(t_2 – t_1)^2\)
(b) \( v(t_2) = v(t_1) + a(t_2 – t_1)\)
(c) Vaverage = \( \dfrac{ x(t_2) – x (t_1)}{(t_2 – t_1)}\)
(d) aaverage = \( \dfrac{v(t_2) – v (t_1) }{(t_2 – t_1)}\)
(e) \( x (t_2) = x (t_1) + v_{av} (t_2 – t_1) +\) (\( \dfrac{1}{2}\)) \( a_{av} (t_2 – t_1)^2\)
(f) \( x(t_2) – x (t_1)\) = Area under the v-t curve bounded by t- axis and the dotted lines.
